A machine learning approach to optimise the usage of recycled material in a remanufacturing environment
نویسندگان
چکیده
Remanufacturing has acquired importance in recent years because of the increasing environmental concerns of manufacturing processes that deplete the Earth’s resources. Some examples of remanufactured products are automobile parts, furniture, photocopiers, and computer printers. In a remanufacturing setup, raw materials are drawn from two sources: (i) ‘cores’, which are obtained from recycled products, and (ii) ‘non-recycled’ or unused materials, which are produced from minerals freshly mined from the earth. An important decision for the manager is to select material optimally from these two sources. Using cores has environmental benefits, and because they are cheap, they reduce manufacturing costs. However, their use generally increases the production time, because of the additional pre-processing usually needed, which can negatively impact service levels. When the supply of finished products is running low, to satisfy service levels, it makes sense to use unused material. This research focuses on identifying an optimal strategy of switching between the two sources of material. A reinforcement learning algorithm is used to solve the switching problem. The switching algorithm produced encouraging results, showing up to 65% cost improvements over a policy that uses only unused materials.
منابع مشابه
Determination of Criticality Indexes in the Remanufacturing Process: A GERT-based Simulation Approach
In this paper one of the important “end of life options” (remanufacturing) has been analysed. Among the related studies surveyed the various remanufacturing aspects, less attention has been paid to the stochastic process routing. In this regard, a remanufacturing process routing with stochastic activities is modelled as a GERT network. One of the efficient ways to analyse a remanufacturing proc...
متن کاملReal-time Scheduling of a Flexible Manufacturing System using a Two-phase Machine Learning Algorithm
The static and analytic scheduling approach is very difficult to follow and is not always applicable in real-time. Most of the scheduling algorithms are designed to be established in offline environment. However, we are challenged with three characteristics in real cases: First, problem data of jobs are not known in advance. Second, most of the shop’s parameters tend to be stochastic. Third, th...
متن کاملA Hybrid Machine Learning Method for Intrusion Detection
Data security is an important area of concern for every computer system owner. An intrusion detection system is a device or software application that monitors a network or systems for malicious activity or policy violations. Already various techniques of artificial intelligence have been used for intrusion detection. The main challenge in this area is the running speed of the available implemen...
متن کاملMachine learning algorithms in air quality modeling
Modern studies in the field of environment science and engineering show that deterministic models struggle to capture the relationship between the concentration of atmospheric pollutants and their emission sources. The recent advances in statistical modeling based on machine learning approaches have emerged as solution to tackle these issues. It is a fact that, input variable type largely affec...
متن کاملApplication of Markov Processes to the Machine Delays Analysis
Production and non-productive equipment and personnel delays are a critical element of any production system. The frequency and length of delays impact heavily on the production and economic efficiency of these systems. Machining processes in wood industry are particularly vulnerable to productive and non-productive delays. Whereas, traditional manufacturing industries usually operate on homoge...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009